If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5((2^2x)+2x)=510
We move all terms to the left:
5((2^2x)+2x)-(510)=0
We multiply parentheses
10x^2+10x-510=0
a = 10; b = 10; c = -510;
Δ = b2-4ac
Δ = 102-4·10·(-510)
Δ = 20500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20500}=\sqrt{100*205}=\sqrt{100}*\sqrt{205}=10\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{205}}{2*10}=\frac{-10-10\sqrt{205}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{205}}{2*10}=\frac{-10+10\sqrt{205}}{20} $
| F(x)=√2+5x | | (4k-11)^2=45 | | 4k2+6k+-2=0 | | 7v=-105 | | -23=-3a-10+a | | 5x-7=2(x+10)-4 | | P(x)=x^-3x+11(=-1) | | P(x)=x^-3x+11 | | 3a+2=-2+3a | | 3a+2=-2 | | 20s+1863=1963 | | x^-3x+11=-1 | | 2x+3x-4x(3x)-x=0 | | 9(c-7)+3=3c+3 | | 9(t-7)-6=7t-2 | | 4x+3x=176 | | -9+4a=5a-6 | | (x+2)/(2)-(5x-12)/(6)=1 | | 2^x+2x-180=0 | | 2x^+2x-180=0 | | 15+x+17=3x-10 | | (4D^5+4D^4-9D^3-11D^2+D+3)y=0 | | 2x^+2x=180 | | 7+4x=6x-11 | | 5^-6x=25^4-2x | | A+(b+b)=22 | | (x+1/3)-2x=(1/2)x+(5/6) | | 4x-2+7x=53 | | 106=-2x-7x+2 | | (x+(1)/(3))-2x=(1)/(2)x+(5)/(6) | | A+2(b)=22 | | -29=x+2x+1 |